教育

这是关于 教育 分类的相关文章列表

矩阵的逆矩阵怎么求

初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。矩阵的逆矩阵怎么求运用初等行变换法...

矩阵相似的充要条件

线性变换在不同基下所对应的矩阵是相似的;反过来,如果两个矩阵相似,那么它们可以看作同一个线性变换在两组基下所对应的矩阵。矩阵相似的充要条件设A,B是数域P上两个矩阵,A与B相似的充分必要条件是它们有相同的不变因子。两...

矩阵等价的充要条件

矩阵等价的定义:若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。矩阵等价的充要条件是同型矩阵且秩相等。相似必定等价,等价不一定相似。两矩阵等价,秩相等,列向量,行向...

三阶伴随矩阵怎么求

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。三阶伴随矩阵怎么求首先求出各代数余子...

对称矩阵的性质

对称矩阵是指元素以主对角线为对称轴对应相等的矩阵。对称矩阵的性质性质:对于任何方形矩阵X,X+XT是对称矩阵;A为方形矩阵是A为对称矩阵的必要条件;对角矩阵都是对称矩阵;两个对称矩阵的积是对称矩阵,当且仅当两者的乘法...

值域怎么求

值域,在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。值...

斜率怎么求

斜率亦称“角系数”,表示平面直角坐标系中表示一条直线对横坐标轴的倾斜程度的量。直线对X 轴的倾斜角α的正切值tgα称为该直线的“斜率”,并记作k,k=tgα。斜率怎么求规定平行于X轴的直线的斜率为零,平行于Y轴的直线...

三角形的高怎么求

三角形的高是一条线段。由于三角形有三条边,所以三角形有三条高,由此三角形的面积也有三种算法。三角形的高怎么求利用三角形的面积公式,得三角形的高=2×三角形的面积÷底。从三角形一个端点向它的对边作一条垂线,三角形顶点和...

瞬时速度怎么求

瞬时速度简称速度(通常说的速度是指平均速度),但是在解题、学术方面碰到“速度”一词,如果没有特别说明均指瞬时速度。理论上来说,瞬时速度只是一个估计值,精确计算的时间应无限接近于0,但不为0。瞬时速度怎么求针对不同运动...

基础解系怎么求

基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。基础解系怎么求步骤:求出矩阵A的简化阶梯形矩阵;根据简化阶梯型矩阵的首元所在位置,写出自由未知量;根据简化阶梯型矩阵...