等价无穷小的性质:有限个无穷小相加、相减、相乘还是无穷小;无穷小与有界函数的乘积还是无穷小;无穷小除以一个极限非零的函数还是无穷小;乘积的某个因子可以换成等价无穷小,和式中的某一部分不能替换。等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。
求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;3、运用两个特别极限。
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
如何证明等价无穷小的三个性质
证明等价无穷小的三个性质:洛必达法则,[ln(1+x)]'=1/(x+1) [e^x-1]'=e^x 分母导数都是1,那不就分别变成了1/(1+x)和e^x当x→0时的极限。
无穷小的等价关系具有下列性质(1),α~α的自反性(2),若α~β,则β~α(对称性),因为α是无穷小且lim(α/α)=1,所以α~α,因为α~β,所以lim(α/β)=1=lim(β/α),所以β~α。
等价无穷小替换
是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
等价无穷小有什么性质呢?
等价无穷小的公式:
1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。
2、(a^x)-1~x*lna [a^x-1)/x~lna]。
3、(e^x)-1~x、ln(1+x)~x。
4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。
注意:无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。 无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
高数:等价无穷小的运算性质
有限个无穷小相加、相减、相乘还是无穷小
无穷小与有界函数的乘积还是无穷小
无穷小除以一个极限非零的函数还是无穷小
乘积的某个因子可以换成等价无穷小,和式中的某一部分不能替换
例如:x→0,tanx-sinx中的tanx和sinx都不能换成x,但是化简tanx-sinx=tanx(1-cosx)后,tanx和1-cosx都可替换
有哪些常用的等价无穷小?
常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。
等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
无穷小的性质:
1、无穷小量不是一个数,它是一个变量。
2、零可以作为无穷小量的唯一一个常量。
3、无穷小量与自变量的趋势相关。
4、有限个无穷小量之和仍是无穷小量。
5、有限个无穷小量之积仍是无穷小量。
6、有界函数与无穷小量之积为无穷小量。
7、特别地,常数和无穷小量的乘积也为无穷小量。
8、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
高数中的等价无穷小要怎么证明
洛必达法则,[ln(1+x)]'=1/(x+1) [e^x-1]'=e^x 分母导数都是1,那不就分别变成了1/(1+x)和e^x当x→0时的极限。
lim(x->0) ( 1- cosx) /(x^2/2)
=lim(x->0) 2( 1- cosx) / x^2 (0/0 分子分母分别求导)
=lim(x->0) 2sinx/(2x)
=1
1- cosx ~ x^2/2
无穷小的性质:
1、有限个无穷小量之和仍是无穷小量。
2、有限个无穷小量之积仍是无穷小量。
3、有界函数与无穷小量之积为无穷小量。
4、特别地,常数和无穷小量的乘积也为无穷小量。
5、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。