中线定理(Apollonius's theorem),又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。
![](http://gongchang.jiangzi.com/uploads/ueditor/php/upload/image/20200625/1593088863172200.jpeg)
定理内容
三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。
定理公式
对任意三角形△ABC,设I是线段BC的中点,AI为中线,则有如下关系:
AB²+AC²=2(BI²+AI²)
或作AB²+AC²=1/2(BC)²+2AI²
证明:勾股定理
![](http://gongchang.jiangzi.com/uploads/ueditor/php/upload/image/20200625/1593086069204832.jpeg)
AB+AC=(AH+BH)+(AH+HC)
=2(AI-HI)+(BI-HI)+(CI+HI)
=2AI-2HI+BI+HI-2BIHI+CI+HI+2CLHI
=2AI+BI+CI
=2(BI+AI)
本文来自网络投稿,仅供学习参考!不代表本站立场,该文观点仅代表原作者本人,本站不拥有所有权,不承担相关法律责任。如发现本站有抄袭侵权/违规的内容,请发送邮件至1762202553@qq.com反馈,一经查实,本站将立刻删除。
-- 展开阅读全文 --